
TECHNICAL WHITEPAPER

How a Solo Dev Built the #1-Ranked Memory

System for AI Agents

95.4% on LongMemEval. Local-first. Zero funding.

Here's what I learned.

The Problem

Your AI coding agent has amnesia. Every session starts from zero. Yesterday's architecture decisions,

last week's debugging insights, the coding conventions you've established over months — gone when

the session ends.

The industry has noticed. Over $180 million has flowed into AI memory startups: Mem0 ($24M, 44K

stars), Mastra ($13M, YC-backed), Letta ($10M, $70M valuation), Emergence ($97M Series C),

Supermemory ($3M, backed by Jeff Dean).

The problem is real, funded, and unsolved.

I built OMEGA to solve it for myself. It scores 95.4% on LongMemEval — first on the leaderboard, ahead

of Mastra's 94.87%. It runs entirely on my laptop. No cloud, no API keys, no external databases. One

SQLite file.

The Retrieval Pipeline

From 76.8% to 95.4%

1. Vector Search bge-small-en-v1.5 (384-dim), sqlite-vec

↓

OMEGA — Technical Whitepaper

omegamax.co/whitepaper | Page 1 of 6

2. Full-Text
Search

FTS5 with BM25 scoring

3. Blended Rank 70% vector + 30% text score

4. Type Weighting decisions/lessons weighted 2x

5. Re-ranking temporal, overlap, abstention floor

~50ms retrieval · All on SQLite · Zero external services

Everything runs on SQLite with two extensions: sqlite-vec for vector similarity and FTS5 for full-text

search. Embeddings from bge-small-en-v1.5 via ONNX on CPU.

The abstention floor matters more than you'd expect. When no memory meets the minimum relevance

threshold, the system returns nothing rather than surfacing low-quality matches. Hallucination from

irrelevant context destroys trust faster than no result at all.

The Optimization Journey

Baseline 76.8%

v2 82%

v3 89.2%

v6 90.8%

v7b 93.2%

v8 95.4%

Each iteration taught something transferable:

Cross-encoders trained on web search hurt conversational memory

Added an MS-MARCO cross-encoder expecting a big win. It dropped the score by 7 points. Web

search relevance and memory relevance are different distributions.

More context isn't always better

K=35 retrieves more relevant memories but also more near-duplicates. The LLM deduplicates

similar notes, causing under-counting. K=25 gives enough signal without the noise.

Aggressive dedup instructions backfire

↓

↓

↓

↓

OMEGA — Technical Whitepaper

omegamax.co/whitepaper | Page 2 of 6

“VERIFY each item and REMOVE duplicates before counting” caused 9 regressions. Simple “list all

relevant items” prompts with soft dedup consistently outperform aggressive filtering.

Query expansion is free accuracy

Extracting temporal dates (“last Tuesday” → “2026-02-11”) and entity names before retrieval adds

~2 points with zero downside.

Where I Am on the Leaderboard

System Score Model

1 OMEGA 95.4% GPT-4.1

2 Mastra OM 94.87% gpt-5-mini

3 Mastra OM 93.27% gemini-3-pro

4 Hindsight 91.4% gemini-3-pro

5 Emergence 86.0% Internal

6 Supermemory 85.2% gemini-3-pro

The gap to #1 is 1.67 points — 8 questions. Scores are self-reported and model-dependent.

Category Breakdown

Single-Session Recall 99%

Preference Application 100%

Knowledge Updates 96%

Temporal Reasoning 94%

Multi-Session Reasoning 83%

The Academic Connection

MAGMA (Jiang et al., January 2026) independently validated the idea that orthogonal decomposition

improves memory retrieval. They decompose memory into four semantic subspaces — semantic,

temporal, causal, and entity graphs.

OMEGA applies the same principle at the system architecture level. The name stands for Orthogonal

Multi-Agent Engine for Generalized Agents. Five independent modules that compose without coupling:

OMEGA — Technical Whitepaper

omegamax.co/whitepaper | Page 3 of 6

Module Tools Scope

Core Memory 26 Store, query, traverse, checkpoint, resume, compact

Coordination 28 File claims, branch guards, task DAG, peer messaging, deadlock detection

Router 10 Multi-LLM routing, intent classification

Entity 8 Entity registry, relationship graphs

Knowledge 5 Document ingestion (PDF, web, markdown)

What Memory-Only Systems Don't Build

Multi-agent coordination. Mem0 doesn't do it. Mastra doesn't do it. Supermemory doesn't do it.

When you run multiple AI coding sessions on the same repo, they will step on each other. Edit the same

file simultaneously. Push to the same branch. Make contradictory architecture decisions.

File Claims

Two agents editing the same file

Branch Guards

Two agents pushing to the same branch

Task DAG

Duplicated work; dependency violations

Peer Messaging

Agents working without awareness of each

other

Intent Broadcasting

Overlapping work plans

Deadlock Detection

Circular waits across claims

All backed by the same SQLite database. No message broker, no distributed consensus, no external

service.

Zero-Configuration Capture

Claude Code event → fast_hook.py → (~5ms UDS) → hook_server.py → memory
+ coordination

OMEGA — Technical Whitepaper

omegamax.co/whitepaper | Page 4 of 6

Seven hooks, 12 handlers. Session start/end, user prompts, edits, reads, git pushes. Fail-open — if the

daemon is down, work continues unblocked.

Intelligent Forgetting

Memory systems that never forget become noise generators. OMEGA implements structured

forgetting:

• TTL: Session summaries expire after 1 day. Checkpoints after 7 days. Lessons and decisions are

permanent.

• Three-layer dedup: Exact hash, semantic similarity (≥ 0.85), and per-type Jaccard similarity.

• Memory evolution: Similar content gets appended to existing memories rather than creating

duplicates.

• Compaction: Clusters related memories, creates summaries, marks originals as superseded.

• Audit trail: Every deletion is logged with its reason. Deterministic, auditable, reversible.

Local-First, Actually

Everything runs on your machine. SQLite for storage. ONNX on CPU for embeddings. FTS5 for text

search. macOS Keychain for encrypted profiles. ~31MB startup, ~337MB after first query.

No cloud account needed. Optional Supabase sync if you choose. Your architecture decisions,

debugging history, and credential patterns never leave your machine.

Try It

$ pip install omega-memory

Open source. Apache 2.0. One command. Works with any MCP client.

View on GitHub See Comparisons

OMEGA — Technical Whitepaper

omegamax.co/whitepaper | Page 5 of 6

https://github.com/omega-memory/core
https://www.omegamax.co/compare

References

[1] Wang, Y., et al. "LongMemEval: Benchmarking Long-Term Memory in AI Assistants." ICLR 2025 Link

[2] Jiang, D., et al. "MAGMA: A Multi-Graph based Agentic Memory Architecture for AI Agents." arXiv,

January 2026 Link

[3] Mastra. "Observational Memory: A New Architecture for Long-Term Agent Memory." mastra.ai,

February 2026

[4] Letta. "Context Repositories: Git-Based Memory for Coding Agents." letta.com, February 2026

[5] Anthropic. "Donating the Model Context Protocol and Establishing the Agentic AI Foundation."

December 2025

OMEGA — Technical Whitepaper

omegamax.co/whitepaper | Page 6 of 6

https://arxiv.org/abs/2410.10813
https://arxiv.org/abs/2601.03236

